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a b s t r a c t 
Background and objective : Medical image segmentation plays a vital role in medical image analysis. 
There are many algorithms developed for medical image segmentation which are based on edge or region 
characteristics. These are dependent on the quality of the image. The contrast of a CT or MRI image 
plays an important role in identifying region of interest i.e. lesion(s). In order to enhance the contrast of 
image, clinicians generally use manual histogram adjustment technique which is based on 1D histogram 
specification. This is time consuming and results in poor distribution of pixels over the image. Cross 
modality based contrast enhancement is 2D histogram specification technique. This is robust and provides 
a more uniform distribution of pixels over CT image by exploiting the inner structure information from 
MRI image. This helps in increasing the sensitivity and accuracy of lesion segmentation from enhanced 
CT image. The sequential implementation of cross modality based contrast enhancement is slow. Hence 
we propose GPU acceleration of cross modality based contrast enhancement for tumor segmentation. 
Methods : The aim of this study is fast parallel cross modality based contrast enhancement for CT liver 
images. This includes pairwise 2D histogram, histogram equalization and histogram matching. The se- 
quential implementation of the cross modality based contrast enhancement is computationally expensive 
and hence time consuming. We propose persistence and grid-stride loop based fast parallel contrast en- 
hancement for CT liver images. We use enhanced CT liver image for the lesion or tumor segmentation. 
We implement the fast parallel gradient based dynamic seeded region growing for lesion segmentation. 
Results : The proposed parallel approach is 104.416 ( ± 5.166) times faster compared to the sequential 
implementation and increases the sensitivity and specificity of tumor segmentation. 
Conclusion : The cross modality approach is inspired by 2D histogram specification which incorporates 
spatial information existing in both guidance and input images for remapping the input image intensity 
values. The cross modality based liver contrast enhancement improves the quality of tumor segmentation. 

© 2019  Published by Elsevier B.V. 
1. Introduction 

Computed tomography (CT) images of abdomen often possess 
low contrast [1,2] . Radiologists often manually delineate lesions 
during segmentation of medical images, which can be difficult, 
time-consuming and prone to observer variability [3] . Some seg- 
mentation algorithms do not perform well when applied on the 
CT images and are time consuming [4,5] . However, their perfor- 
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mance can be made better once the CT images are preprocessed 
[6,7 ] . Therefore, preprocessed CT images help in refining the le- 
sions. One possible preprocessing step is image enhancement for 
the better visualization of tumors in undertaking surgical proce- 
dures [8–10] . 

Efficient preprocessing can certainly help to attain accurate seg- 
mentation of the critical structures in medical images [7 ,11] . High 
sensitivity and specificity indicates the improved quality of the 
segmentation [5,12] . The liver images obtained from the CT scans 
are sometimes noisy, low in contrast and contains high amounts of 
details. We consider contrast as the important feature. If the image 
is high contrast then it becomes easier to identify and segment the 
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object of interest [2,13] . In our case, lesion is necessary to be seg- 
mented. 

There are many methods proposed to improve the contrast of 
the image. Histogram equalization, histogram specification and his- 
togram matching are some of the ways to improve the contrast in 
the image as discussed by [1,14,15] . We apply 2D histogram match- 
ing where CT liver is the target image and the magnetic resonance 
imaging (MRI) liver slice is the guided image [16,17 ] . Cross modal- 
ity based contrast enhancement exploits 2D histogram matching 
for liver enhancement. Once the image is enhanced then the task 
is to segment tumor from enhanced image. Seeded region growing 
for tumor segmentation is an easy and effective process. But the 
task of cross modality based liver enhancement is computationally 
expensive and time consuming [18] . Hence it becomes necessary to 
use GPU for real time performance of liver contrast enhancement 
and tumor segmentation. We propose accelerated cross modality 
guided liver enhancement scheme in this paper and demonstrate 
that our technique improves tumor segmentation on enhanced im- 
age. 

The aim of this study is cross modality based liver enhance- 
ment to improve the contrast of CT liver image for tumor segmen- 
tation. We propose parallel implementation of liver contrast en- 
hancement. This is accomplished by 2D histogram matching using 
CT and MRI liver images. We propose dynamic region of interest 
(RoI) based seeded region growing (SRG) for tumor segmentation 
from enhanced CT image. The overall average speedup obtained by 
parallel implementation is 104.416 ± 5.166 times compared to 
the sequential CPU implementation of the contrast enhancement 
and tumor segmentation. The enhanced liver image improves the 
sensitivity and specificity of the lesion segmentation. This is the 
first work targeted towards the high performance multi-modality 
guided liver enhancement for tumor segmentation to the best of 
our knowledge. 

The rest of the paper is organized as follows. Section 2 briefs 
the related works, background and motivation with respect to the 
liver image enhancement. Section 3 explains the proposed method- 
ology for liver contrast enhancement and its parallel implementa- 
tion on the GPU. Further, we discuss dynamic RoI based fast par- 
allel SRG for tumor segmentation in Section 4 . Performance re- 
sults and comparison of contrast enhancement and seeded region 
growing for tumor segmentation are mentioned in the Section 5 . 
Section 6 concludes summarizing the main results related to the 
cross modality based contrast enhancement and tumor segmenta- 
tion. 
2. Background and motivation 

Segmentation of lesions is a challenging problem in medical im- 
ages because of the similar intensity values of structures of inter- 
est and the nearby regions in image. Research works are targeting 
various methods for the segmentation [19 –21] . The results of the 
segmentation are subsequently used in patient specific model for 
diagnostics, surgery planning and navigation. One such approach 
using gradient based SRG has been presented to segment the aorta 
and rib bones in thorax images by Rai and Nair [21] . Inspired by 
this idea, we propose parallel SRG to segment tumors from CT liver 
images. 

Image enhancement is regarded as a precursor to the accurate 
segmentation. CT scans are commonly used due to the availability 
and quicker imaging time compared to MRI. CT scans often suffer 
from low contrast which limit their utility [1,2] . In this work, we 
show through our experiments that corresponding MR image can 
be employed to improve the contrast of CT. The idea to enhance 
an image using another cross modal image has been witnessed in 
the literature for natural images [6–9 ] . The motivation to use cross 
modality guided image enhancement is to use the additional in- 

formation contained in the other image having similar contents in 
different imaging times or position but better contrast or minimal 
noise. Ultimately, the details in the enhanced image can be im- 
proved from the perceptual perspective. In the context of liver im- 
ages, tumors can be easily seen in the enhanced CT image. 

In this regard, the contrast of photographs was improved using 
the corresponding near infra red images [6,14] . Histogram specifi- 
cation in combination with wavelet domain processing was used 
in this work. Yan et. al proposed a variational approach using 
anisotropic filter to eliminate noise in color images using infrared 
images [9 ] . The authors calculated cross correlation between input 
images and then used joint filtering for denoising in another ap- 
proach [7 ,11] . 

Deep learning is applied to multimodal image denoising re- 
cently [8] . A deep learning method consisting of three convolu- 
tional neural networks has been applied to denoise natural im- 
ages. Various deep learning based approaches for CT denoising 
have been presented in the last few years, however, they do not in- 
corporate the multimodality guidance and use the CT image alone 
for supervised learning [16,17 ,22] . Histogram based methods are 
useful to enhance the global contrast of image [14] , however, they 
introduce bad artifacts in the processed images. Since it does not 
consider the neighborhood of the pixels while remapping, it does 
not necessarily gives the desired contrast [2,14,23] . Two dimen- 
sional histogram specification is presented recently to improve the 
1D histogram specification [18] . It uses 2D cumulative distribution 
function of the input and target images for remapping intensity 
values in the original image. 

We apply same notion to CT liver images by applying 2D his- 
togram matching based cross modality approach for liver contrast 
enhancement in the following section. 
3. Methodology: liver contrast enhancement 

We aim to improve the contrast of CT liver image consider- 
ing MRI liver image as the guidance image to increase the qual- 
ity of lesion segmentation. The methodology includes 2D contrast 
enhancement, gradient of enhanced image and segment the lesion 
using gradient based SRG. The parallel approach for liver enhance- 
ment and lesion segmentation makes the process faster in order to 
achieve real time implementation. In this section, we discuss paral- 
lel implementation of the cross modality based liver enhancement. 

The flow of proposed GPU implementation of cross modality 
based contrast enhancement is shown in Fig. 1 . We load CT and 
MRI images of liver on CPU and transfer it to the GPU. The first 
step of contrast enhancement of CT liver image is 2D (or pairwise) 
histogram calculation (Hist_2d). We calculate parallel 2D histogram 
of both CT (hist_CT) and MRI (hist_MRI) images. A 2D histogram 
is a plot of pixel and its neighbouring element which allows us 
to discover, and show, the underlying 2D frequency distribution 
(shape) of image. This shows how often each set of values (pixel 
and neighbour) in the image occurs. Instead of just considering 
the individual pixel values, it considers every possible pixel pair 
in the input and guidance image and calculate 2D CDF accordingly 
[18,24] . 

Further the calculation of cumulative distributive function 
(CDF_2d) of CT (CDF_CT) and MRI (CDF_MRI) images on GPU cre- 
ates the input for the next step i.e. histogram equalization. 2D CDF 
is a function that describes the probability of a possible pixel pair 
in the input and guidance image. This helps in finding most fre- 
quent pairwise intensity values for histogram equalization [18] . 

Then we perform parallel histogram equalization (HE_2d). This 
step spreads out the most frequent pairwise intensity values in- 
creasing the global contrast of image. Hence it improves lower con- 
trast areas to gain a higher contrast [18,24] . 
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Fig. 1. GPU implementation of the cross modality based contrast enhancement. 
The mapping (Map_2d) of histogram equalization onto the CT 

image gives the enhanced image. It maps the modified intensity 
values obtained from 2D histogram equalization to the correspond- 
ing pixels [18] . 

Inter block GPU synchronization (IBS) makes sure the updated 
values are sent to the next modules in GPU computing blocks. 
These parallel implementations of sub-modules of contrast en- 
hancement are explained in following sections. 
3.1. 2D Histogram 

In this section, we discuss the 2D histogram implementation 
on GPU as the first step of the contrast enhancement of CT liver 
image. The histogram length (HL) is 256. We launch HLxHL par- 
allel threads and find the histogram of neighboring elements in 
pairs. Hence it is called as pairwise histogram. Pairwise histogram 
is stored in an array of size HLxHL. 

For each thread in parallel, it takes the pixel (x,y) and neigh- 
bouring pixel (x+1,y) value. This represents one of the indices in 
the range of (0-HLxHL-1) in histogram array given by variable 
temp as shown in Algorithm 1 . We increment corresponding value 

Algorithm 1: 2D Histogram of CT and MRI Image (Hist_2d). 
1: HL=256 and launch HL x HL parallel threads 
2: ti and tj can be any thread id between 0–255 
3: while x < width_of_image do 
4: while y < height_of_image do 
5: if ti == I[ x ][ y ] and t j == I[ x + 1][ y ] then 
6: temp=ti*HL+tj; 
7 : atomicAdd(histogram[temp], 1); 
8: end if 
9 : end while 

10: end while 
in the index position in histogram array as shown in Fig. 2 . This 
function hist_2d for CT and MRI images gives hist_CT and hist_MRI 
histograms respectively. These 2D histograms are the input to the 
cumulative distributive function which is the next step of contrast 
enhancement. 
3.2. Cumulative distributive function (CDF) 

In this step of contrast enhancement, we calculate CDF of 2D 
histograms of CT and MRI liver images. The maximum number of 

Fig. 2. 2D Histogram. 
histogram pairs can be (w −1) ×(h) where w and h are width and 
height of the image. 

We launch HL × HL threads in parallel as shown in Algorithm 2 . 
Each thread calculates its CDF from respective 2D histogram val- 
Algorithm 2: Calculate CDF of CT and MRI Image (CDF_2d). 

1: count= (width-1)*height i.e. maximum number of pairs 
2: HL=256 and launch HL x HL parallel threads 
3: ti and tj can be any thread id between 0–255 
4: temp=ti*HL+tj; 
5: while temp < HL*HL do 
6: for int j=0; j < = temp; j++ do 
7 : cdf [ temp]+ = histogram [ j] /count;
8: end for 
9 : end while 

ues. These CDF values for CT (CDF_CT) and MRI (CDF_MRI) images 
are the input to the next step of contrast enhancement which is 
2D histogram equalization. 
3.3. 2D Histogram equalization (HE_2d) 

2D Histogram Equalization technique improves the contrast of 
image. It spreads out the most frequent intensity values. This 
method increases the global contrast of image. This improves the 
lower contrast areas to gain higher contrast. The pseudocode for 
2D histogram equalization is shown in the Algorithm 3 . We launch 
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Algorithm 3: Calculate 2D Histogram Equalization (HE_2d). 

1: HL=256 and launch HL x HL parallel threads 
2: ti and tj can be any thread id between 0–255 
3: index=ti*HL+tj; 
4: for k=0; k < HL; k++ do 
5: for l=0; l < HL; l++ do 
6: temp8=k*HL+l; 
7 : temp = cdf1[index]-cdf2[temp8] 
8: if temp is minimum then 
9 : x = k 

10: end if 
11: if multiple minimum values found then 
12: temp2 = absolute((ti-k) + (tj-l)) 
13: if temp2 is minimum then 
14: x = k 
15: end if 
16: if multiple minimum temp2 are found then 
17 : temp3 = absolute((ti-tj) - (k-l)) 
18: if temp3 is maximum then 
19 : x = k 
20: end if 
21: end if 
22: end if 
23: end for 
24: end for 
25: HE[index]=x; 

HLxHL threads in parallel. Each thread calculates the corresponding 
histogram equalization by taking the minimum difference between 
two CDFs (cdf1 for CDF_CT and cdf2 for CDF_MRI). It takes into 
the account the first minimum euclidean distance value between 
the indices when multiple minimum difference in CDFs are found. 
Again when multiple solutions are available, it further computes 
and find out the equalized value saved in array HE. This array is 
ready to get mapped for enhanced image which is the final step of 
contrast enhancement. 
3.4 . Mapping 

The mapping of 2D histogram equalization is essential for ob- 
taining enhanced CT image as an output. We launch wxh threads 
where w and h are width and height of the image respectively. 
This is reverse process of 2D histogram calculation as explained 
in the psuedocode given by the Algorithm 4 . The index value is 

Algorithm 4: Mapping for Enhanced Image (Map_2d). 
1: launch (width)*(height) parallel threads 
2: HL=256 
3: tw can be any thread id between 0 to width-1 
4: th can be any thread id between 0 to height-1 
5: temp1 = I[ tw ][ th ] ;
6: temp2 = I[ tw + 1][ th ] ;
7 : index = temp1 ∗ HL + temp2 ;
8: I[ tw ][ th ] = HE [ index ] ; //E nhancedImage 

generated from the neighbouring pixel values of the CT image. The 
pixel value in the CT image is changed by the corresponding value 
in the location (index) given by the 2D histogram equalization ar- 
ray. When all the threads are finished processing corresponding 
pixels, the enhanced image is sent back to the CPU. 

4. Application to the tumor segmentation 
Seeded Region Growing is an easy approach to segment the var- 

ious objects in an image. The result of the region growing relies 
mainly on the initial seed(s) and the criteria defined to end re- 
cursive or iterative region growing process [4,19 ,25,26] . The paral- 
lel implementation of SRG based tumor segmentation is shown in 
Fig. 3 . 

We load CT and MRI images and transfer it to the GPU. GPU 
performs cross modality based contrast enhancement and stores 
the enhanced CT image in GPU memory. The control comes back to 
the CPU. This is essential for the selection of seed(s) and to change 
the number of persistent blocks. These persistent blocks (i.e. num- 
ber of available computing resources on the GPU) differ depending 
on the application. The next task is tumor segmentation. GPU com- 
putes the gradient of enhanced CT liver image. The gradient of en- 
hanced liver image is communicated through IBS to the next mod- 
ule for tumor segmentation. We apply SRG on the gradient of en- 
hanced liver image. Region grows and new seeds are formed from 
initial seed(s) based on the threshold criteria. This process is itera- 
tive until the threshold criteria is satisfied. The process stops when 
new seed(s) can not be formed and region can not be grown fur- 
ther. 

In this work, we use threshold criteria defined by the homo- 
geneity of region and region aggregation considering the pixel val- 
ues and their gradient direction and magnitude. The criteria is 
defined via a cost function that uses few features of the image 
around seed. Value of the cost function is compared with homo- 
geneity criteria specified to check if the value is smaller than 1. 
The pixel becomes part of the region if there is a match; other- 
wise it is excluded from the region. The cost functions for thresh- 
old criteria are given by Rai and Nair [21] . They select homogeneity 
criterion using gradient based cost function which are dependent 
upon object contrast, texture features like shape and color, inten- 
sities values, gradient direction and magnitude. The cost function 
exploits features of image around the seed. 

We apply parallel gradient based SRG algorithm on both en- 
hanced images and original CT liver images. We propose dynamic 
RoI based parallel SRG. 
4 .1. Dynamic SRG 

Dynamic SRG as the name suggests, it increases the region of 
interest (RoI) in each iteration of SRG. The initial RoI is decided by 
number of active computing blocks or persistent blocks that can 
be launched on GPU. This represents the phenomenon of persis- 
tence. In order to communicate valid data in between the blocks, 
inter block GPU synchronization (IBS) is necessary. Persistence and 
IBS provide flexibility to exploit parallelism using grid-stride loop 
through constant increase in RoI. One grid-stride is number of ac- 
tive computing threads that can be launched on GPU device. 

Gupta et al. [27 ] have explored persistent thread based GPU 
programming. The idea behind this is once the SRG kernel 
launched from CPU, the control returns from GPU when the region 
is grown completely. Intermediate data transfers between CPU and 
GPU are avoided in this approach. SRG kernel on GPU is launched 
from the host CPU. Region is grown on GPU. Image elements are 
updated and communicated to the blocks via IBS. The region is 
grown again on GPU, if new similar neighbouring elements are 
found. This process continues until no similar neighbouring ele- 
ments are available. The kernel terminates when the region can 
not be grown further and control returns to the CPU. Redundant 
data computations and communications are optimized on GPU us- 
ing proposed approach. This process is explained in the Fig. 4 . 

There are four persistent blocks processing grid of blocks using 
grid-stride loop as shown in Fig. 4 a. We map 3D liver on grid of 
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Fig. 3. GPU implementation of SRG based tumor segmentation. 

Fig. 4. SRG using dynamic RoI of tiles. 
blocks as shown in Fig. 4 b and initialize RoI of tiles around the 
seed as shown in Fig. 4 c. Persistent blocks operate within RoI. First 
step of SRG takes place. Region is grown and RoI is incremented 
in all directions. This process makes necessary neighbouring vox- 
els available for the second step of SRG as shown in Fig. 4 d. New 
neighbouring voxels perform same function and RoI is incremented 
again. This flow is repeated until region can not be grown further 
as shown in Fig. 4 e and f. This approach reduces compute and 
memory operations resulting in the increased performance. It is 
needed to ensure that the increase in RoI lies within the image 
dimensions. 

Complete process is defined in the Algorithm 5 . RoI should be 
initialized in such a way that all threads are busy performing SRG. 
Variable “blockgrow” is essential to check the increase the RoI. In- 
crease RoI of tiles if value of “blockgrow” is ”1”, otherwise stop 
SRG as region is grown completely. This variable “blockgrow” along 
with the variable “unfinished” are updated in the SRG segmenta- 
tion step. Lower and upper values of RoI (in x , y , and z directions) 
are calculated when “blockgrow” is “1”. It has to be made sure that 

the RoI should not increase beyond image dimensions in the suc- 
cessive steps of SRG. 

Persistent blocks operate inside the RoI. Kernel SRG is called for 
the voxels within the RoI. IBS makes sure only updated values are 
communicated to the persistent blocks in each step of SRG. IBS can 
be atomic, quasi, lock free or based on cooperative groups from 
NVIDIA toolkit CUDA 10.1 [28–30] . We use quasi IBS for our ap- 
proach due to its efficient implementation [28] . 
5. Results and discussion 

We discuss performance analysis of proposed parallel cross 
modality based liver enhancement for tumor segmentation. The 
enhanced liver images and segmented tumors are shown and the 
performance analysis of tumor segmentation is discussed based on 
quality assessment. We use Intel(R) Core(TM) i7 -7 7 00HQ CPU @ 
2.80GHz RAM 24 GB, NVIDIA GPU GeForce GTX 1050 (RAM 4GB), 
and CUDA Toolkit 10.1 to compare the proposed parallel GPU ap- 
proach with CPU implementation. 



6 N. Satpute, R. Naseem and E. Pelanis et al. / Computer Methods and Programs in Biomedicine 184  (2020) 105285 
Algorithm 5: Grid-stride Loop through Dynamic RoI. 

1: blockgrow=1; 
2: while blockgrow==1 do 
3: blockgrow=0; 
4: unfinished=1; 
5: Increase RoI of Tiles; 
6: To Increase RoI of Tiles 

w=w+1; h=h+1; d=d+1; 
7 : Ensure RoI within image dimensions; 
8: while unfinished==1 do 
9 : unfinished=0; 

10: for int i=blockIdx.x;i < = w/blockDim.x ;i+=gridDim.x do 
11: for int j=blockIdx.y;j < = h/blockDim.y ;j+=gridDim.y do 
12: for int k=blockIdx.z;k < = d/blockDim.z;k+=gridDim.z 

do 
13: Region_Growing(arguments, unfinished, 

blockgrow); 
14: end for 
15: end for 
16: end for 
17 : Inter_Block_GPU_Sync(); 
18: end while 
19 : end while 

5.1. Liver enhancement 
We propose fast parallel cross modality based contrast en- 

hancement. 2D histogram of CT image is mapped to 2D histogram 
of guidance or MR image to get a better contrast image. 

Fig. 5 shows input CT, MRI and enhanced CT liver images with- 
out any tumors. Fig. 6 shows enhanced CT liver images with tu- 
mors. Figures show the contrast is enhanced significantly to ob- 
serve tumors clearly. Enhanced image is further processed for tu- 
mor segmentation using SRG. Average time taken by NVIDIA GPU 
GeForce GTX 1050 is 1.9 7 6 s ± 0.43 s providing the average 
speedup of 104.416 ± 5.166 times over CPU implementation 

Fig. 5. CT, MR and enhanced CT images. 
(208.082s ± 55.7 9 9 s) for tumor segmentation using 2D cross 
modality based contrast enhancement. 

In order to enhance the contrast in CT images, we investigate 
quality improvements by fusing the information that is available in 
one modality (e.g. liver inner structures in MRI) to guide the adap- 
tive enhancement in other image modality (e.g. CT in our case). 
This provides better control over the enhancement and is more ef- 
fective and efficient than the state of the art technique used by 
clinicians. Clinicians generally use manual histogram adjustment 
technique based on 1D histogram specification on CT or MRI scans. 
This process does not provide efficient distribution of pixels for 
contrast enhancement of CT or MRI image. There are more chances 
of artifacts in 1D enhancement as it results in random histogram 
and is also a time consuming process. 

However, 2D histogram specification incorporates spatial infor- 
mation while calculating 2D CDFs of both the guidance and input 

Fig. 6. CT, MR and enhanced CT images showing tumors. 
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Fig. 7. CT, MR and enhanced CT (Enh) with GLCM plots. 
images and for remapping the input image intensity values. Instead 
of just considering the individual pixel values, it considers every 
possible pixel pair in the input and guidance image and calculate 
2D CDF accordingly. Looking at the Gray Level Co-Occurrence Ma- 
trix (GLCM) plots in Fig. 7  , it can be observed that the distribu- 
tion of pixel pairs in GLCM plot of the resulting enhanced image 
( Fig. 7  f) is expanded but concentrated along the diagonal in com- 
parison to GLCM plots of CT and MR image ( Fig. 7  d and e), which 
means it does not introduce artificial artifacts unlike 1D histogram 
specification or histogram equalization. 

We provide the histogram comparison of images using 1D and 
proposed 2D technique as shown in Fig. 8 . The proposed 2D cross 
modality approach provides a proper distribution of pixel elements 
using guided MRI compared to 1D approach applied on CT or MRI 
image. 1D approach introduces unpleasant effects in the enhanced 
image. The histogram of enhanced CT using cross modality ap- 
proach is similar to guided MRI image. There are more chances of 
artifacts in enhanced image using 1D approach as clinicians use 
manual adjustment which may result in any random histogram of 
the enhanced image. In the next section, we discuss the impact of 
cross modality based contrast enhancement for tumor segmenta- 
tion. 
5.2. Tumor segmentation 

We propose fast parallel gradient based dynamic SRG for tumor 
segmentation. Our proposed parallel SRG is implemented on GPU. 
It does not involve transfer of data between CPU and GPU. The data 
for the research work have been acquired from The Intervention 
Center, University of Oslo, Norway [31] . The ground truths for tu- 
mor segmentation are provided by the clinician. We present the 
visual comparison of tumor segmentation on both enhanced and 
original CT liver images. The results in Figs. 9 –11 show the tumor 
segmentation from original and enhanced liver images. Fig. 9  a1 
represents the original CT liver image. The gradient of input CT 

image is shown in Fig. 9  a2. The tumor segmentation (Seg) and 
the ground truth (GT) for the original CT liver slice are shown in 
Fig. 9  a3 and a4 respectively. 

We enhance original CT liver image ( Fig. 9  a1) using cross 
modality based liver enhancement and the enhanced image 
(Enh_CT) is shown in Fig. 9  b3. The tumor segmentation is per- 
formed on the enhanced CT liver image ( Fig. 9  b3) and segmented 
tumor from enhanced CT image is shown in Fig. 9  b5. The quality 
of tumor segmentation is validated in our clinical validation sec- 
tion using Table 1 . Tumor segmentation for other CT liver slices are 
shown in Figs. 10 , and 11 and the segmentation quality is improved 
when the image is enhanced. Hence the cross modality based con- 
trast enhancement on CT liver images improves the quality of tu- 
mor segmentation and it is faster. The proposed fast parallel liver 
enhancement based tumor segmentation is 104.416 ± 5.166 times 
faster compared to the sequential implementation. We include 
Table 2 showing experimental evaluation on 10 different datasets 
(including 107  tumor slices) obtained from The Intervention Cen- 
tre, Oslo University Hospital, Oslo, Norway. It can be observed from 
the table that the cross modality based liver enhancement helps in 
improving the sensitivity, specificity (denoted by ‘Sensi’ and ‘Speci’ 
respectively in Table 2 ) and accuracy of tumor segmentation and 
GPU implementation of proposed approach is around 100 times 
faster compared to the CPU implementation. P value from ANOVA 
(analysis of variance) for the ten datasets is 3 . 31 × 10 −14 which is 
less than 0.05. We reject the null hypothesis and conclude that not 
all means are equal which confirms the means are statistically sig- 
nificant for the concerned experiments. 
5.3. Clinical validation 

Tables 1 and 2 show the analysis of tumor segmentation before 
and after enhancement of CT liver images. Table 1 includes 5 liver 
slices with tumors from different datasets and Table 2 shows per- 
formance evaluation on 10 different datasets including 107  tumor 
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Fig. 8. Comparison between 2D cross modality and 1D histogram approach. 

Fig. 9. Tumor segmentation from original and enhanced CT image 1. 
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Fig. 10. Tumor segmentation original and enhanced CT image 2. 

Fig. 11. Tumor segmentation from original and enhanced CT image 3. 
Table 1 
Tumor segmentation analysis on five slices. 

Tumor Without any Enhancement With Enhancement Time-Enh + SRG(s) Speedup 
Slice # Sensitivity, Specificity Accuracy Sensitivity, Specificity Accuracy CPU GPU 
1 0.55 0.9 9 89 9  0.82 0.9 9 9 06 27 2.07  2.48 109 .7 06 
2 0.38 0.9 9 9 18 0.81 0.9 9 89 8 265.9 8 2.41 110.365 
3 0.47  0.9 9 7 69  0.58 0.9 9 68 167 .81 1.68 9 9 .887  
4 0.83 0.87 09 1 0.50 0.9 9 7 65 162.03 1.61 100.64 
5 0.47  0.9 9 7 86 0.7 4 0.9 9 823 17 2.52 1.7 0 101.482 
Average 0.54 0.9 7 3 0.69  0.9 9 8 208.082s 1.9 7 6s 104.416 
Std. Dev. 0.17 3 0.057  0.143 0.001 55.7 9 9 s 0.43s 5.166 

slices. We chose sensitivity (true positive rate or recall) and speci- 
ficity (true negative rate) as performance metrics for the evalua- 
tion of tumor segmentation [5,12] . It is observed that, the sensi- 
tivity and specificity are increased when the accuracy is nearly 1 
on the enhanced image. This implies that when the tumor is actu- 
ally present, then it is predicted more accurately when the image 
is enhanced. 

5.4 . Discussion 
In this paper, we propose fast parallel cross modality based con- 

trast enhancement for CT liver images. Further GPU performs dy- 
namic RoI based tumor segmentation on enhanced CT liver image. 
These fast parallel implementations are based on persistence, grid- 
stride loop and IBS. The process of cross modality based contrast 
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Table 2 
Tumor segmentation analysis on ten different datasets. 

Dataset # Size of each 
Slice (wxh) Total # of 

Slices # of Tumor 
Slices Without any Enh (Average) With Enh - Average (Avg.) Enh + SRG Avg. Time (s) Avg. Speedup 

Sensi, Speci Model accuracy Sensi, Speci Model accuracy CPU GPU 
1 406 × 29 9  7 3 10 0.28 0.9 9 132 0.36 0.9 9 517  141.07  1.41 100.054 
2 512 × 512 139  7  0.41 0.9 9 213 0.52 0.9 9 7 9 6 252.22 2.29  109 .9 01 
3 381 × 304 67  10 0.48 0.9 9 412 0.65 0.9 9 689  131.89  1.32 9 9 .9 16 
4 405 × 346 87  8 0.39  0.9 9 325 0.47  0.9 9 7 17  158.56 1.56 101.641 
5 462 × 321 59  14 0.32 0.9 9 17 3 0.50 0.9 9 823 167 .01 1.63 102.460 
6 380 × 512 58 9  0.49  0.9 9 112 0.64 0.9 9 421 202.02 1.89  106.89  
7  443 × 437  63 6 0.51 0.9 9 201 0.7 1 0.9 9 501 19 3.17  1.83 105.55 
8 361 × 249  63 7  0.37  0.9 9 312 0.57  0.9 9 427  126.60 1.26 100.47  
9  483 × 386 80 6 0.31 0.9 9 415 0.59  0.9 9 612 185.7 8 1.80 103.21 
10 456 × 400 216 30 0.42 0.9 9 17 8 0.62 0.9 9 324 189 .9 3 1.82 104.35 

enhancement is computationally expensive and hence time con- 
suming. This involves 2D histogram calculation, equalization and 
histogram matching [22] . They require several light weight tasks. 
The performance on GPU is improved compared to the CPU by di- 
viding the tasks on several active threads. 

The second part of the process is tumor segmentation. We pro- 
pose gradient and dynamic RoI based SRG inspired from the works 
of Rai and Nair [21] . Initially, the process needs small part of the 
region to be accessed instead of whole image (as implemented 
previously on GPU). As soon as region grows, RoI should be in- 
creased to access more neighbouring elements. GPU implementa- 
tion of SRG involves kernel termination and relaunch continuously 
from CPU. This is time consuming. We avoid this by using persis- 
tence and grid-stride loop and obtain the significant speedup i.e. 
104.416 ± 5.166 times compared to the sequential implementa- 
tion of liver enhancement and tumor segmentation. 
6. Conclusion 

In this paper, we discuss cross modality based contrast en- 
hancement for CT liver images, application to tumor segmenta- 
tion and their fast parallel implementation on GPU. Cross modality 
based liver enhancement includes CT liver image as an input and 
MRI liver image as a guided image. Pairwise 2D histogram imple- 
mentation and histogram equalization spreads the intensity values 
across the image producing contrast enhanced CT image. We pro- 
pose persistence and grid-stride loop based fast parallel implemen- 
tation on GPU. The enhanced image then used for segmentation 
of tumors from enhanced CT liver images effectively. We propose 
gradient and dynamic RoI based seeded region growing for tumor 
segmentation. The parallel approach for liver enhancement and tu- 
mor segmentation is 104.416 ± 5.166 times faster compared to 
the CPU implementation. 
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