
Fast Parallel Vessel Segmentation1

Nitin Satputea, Rafael Palomarb, Rabia Naseemc, Orestis Zachariadisa, Juan2

Gómez-Lunad, Faouzi Alaya Cheikhc, Joaqúın Olivaresa3

aDepartment of Electronic and Computer Engineering, Universidad de Córdoba, Spain4

bThe Intervention Centre, Oslo University Hospital, Norway5

cNorwegian Colour and Visual Computing Lab, Norwegian University of Science and Technology, Norway6

dDepartment of Computer Science, ETH Zurich, Switzerland7

Abstract8

Accurate and fast assessment of vessel segmentation from liver slices remain challenging9

and important tasks for the clinicians. The algorithms from the literature are not fast and10

accurate for vessel segmentation. We propose fast parallel gradient based seeded region11

growing approach for vessel segmentation. Seeded region growing is tedious when the12

inter-connectivity between the image elements is unavoidable. Parallelizing region growing13

algorithms are essential towards achieving real time performance for the overall process of14

accurate vessel segmentation. The parallel implementation of seeded region growing for15

vessel segmentation is iterative and hence time consuming process. Seeded region growing16

is implemented as kernel termination and relaunch on GPU due to its iterative mechanism.17

The iterative process in region growing is time consuming due to intermediate memory18

transfers between CPU and GPU. We propose persistent and grid-stride loop based parallel19

approach for region growing. We analyze static region of interest of tiles on GPU for the20

acceleration of seeded region growing. The proposed parallel approach provide fast accurate21

2D vessel segmentation. We implement parallel gradient based seeded region growing for22

vessel segmentation. The proposed parallel seeded region growing for vessel segmentation is23

1.9x faster compared to the kernel termination and relaunch.24

Keywords: Seeded Region Growing, GPU, Kernel Termination and Relaunch (KTRL),25

Persistent, Grid-stride loop26

Preprint submitted to Elsevier December 16, 2019

Author's copy. How to cite: Satpute N; Naseem R; Palomar R; Zachariadis O; Gómez-Luna J; Cheikh, FA;
Olivares, J. “Fast Parallel Vessel Segmentation”. Computer Methods and Programs in Biomedicine 192,
105430. 2020. DOI: 10.1016/J.CMPB.2020.105430

Jolivaresimac
Rectángulo

1. Introduction27

In medical imaging, vessel segmentation from liver slices is one of the challenging tasks.28

Seeded region growing (SRG) is a widely used approach for semi automatic vessel segmentation29

[1]. Delibasis et. al. have proposed a tool based on a modified version of SRG algorithm,30

combined with a priori knowledge of the required shape [2]. SRG starts with a set of pixels31

called seeds and grows a uniform, connected region from each seed. Key steps to SRG are32

to define seed(s) and a classifying criterion that relies on the image properties and user33

interaction [3]. SRG starts from a seed and finds the similar neighboring points based34

on the threshold criteria using 4 or 8 connectivity. The region is grown if the threshold35

criteria is satisfied. Similar neighbors are new seed points for the next iteration. This36

process is repeated until the region can not be grown further. In practice, it demands high37

computational cost to the large amount of dependent data to be processed in SRG especially38

in the medical image analysis and still requires efficient solutions [4].39

SRG is an iterative process. SRG is invoked continuously until region can not be grown40

further. Iterative process in SRG, when implemented on GPU requires terminating kernel41

and relaunching from CPU (Kernel Termination and Relaunch (KTRL)) and data transfers42

between CPU and GPU [3]. So our main objective is to reduce these data transfers using43

different inter block GPU synchronization (IBS) methods resulting in an efficient parallel44

implementation of SRG. IBS provides flexibility to move all the computations on GPU by45

providing visibility to updated intermediate data without any intervention from CPU.46

In this paper, we propose persistent, grid-stride loop and IBS based GPU approach for47

SRG to avoid intermediate memory transfers between CPU and GPU. This also reduces48

processing over unnecessary image voxels providing significant speedup. Persistent thread49

block (PT) approach is basically dependent on number of active thread blocks and grid-stride50

loop becomes essential when the number of threads in the grid are not enough to process51

the image voxels independently [5, 6].52

We implement parallel image gradient using grid-stride loop. We propose gradient53

and shared memory based fast parallel SRG implemented entirely on GPU without any54

2

intermediate transfers between CPU and GPU. This is inspired by parallel processing on55

static region of interest (RoI) of tiles on GPU. We compare the proposed persistent based56

parallel SRG with KTRL for accurate vessel segmentation. The gradient based fast parallel57

SRG for 2D vessel segmentation is 1.9x faster compared to the state-of-the-art.58

The rest of the paper is structured as follows. Section 2 briefs relevant works and59

state-of-the-art with respect to SRG. Section 3 explains GPU approaches (KTRL and60

Static) for SRG implementation using persistence and grid-stride loop. The application61

of parallel SRG to vessel segmentation is discussed in the Section 4. Performance results62

and comparison of persistent and grid-stride loop based parallel SRG for vessel segmentation63

are mentioned in the Section 5. Section 6 concludes summarizing the main conclusions of64

this paper and indicating future directions.65

2. Background and Motivation66

The SRG plays vital role in medical image segmentation. Smistad et. al. [7] and [8]67

have discussed about parallel SRG for image segmentation. The reference implementation68

is shown in the Figure 1. Medical image dataset is cropped before processing. Then the69

CPU allocates the memory equivalent to the cropped size to copy the data to the cropped70

image on the GPU. Further SRG is performed for image segmentation. This is the simplistic71

representation of the work by Smistad et. al. [8]. We have not considered pre-processing72

stage in this work assuming the images are pre-processed. Smistad et. al. [8] have proposed73

non-PT (non persistent thread) approach for SRG based vessel segmentation.74

Smistad et al. in [3] have proposed parallel region growing with double buffering algorithm75

based on the parallel breadth first search algorithm by Harish and Narayanan [9]. They have76

suggested a dynamic queue for SRG and mentioned that changing the number of threads77

(due to border expansion of the region) typically involves restarting the kernel, and this78

requires reading all the values from global memory again. But they have not recommended79

probable solution for this problem. Smistad et al. in [10] have presented a data parallel80

version of the SRG based Inverse Gradient Flow Tracking Segmentation algorithm using81

KTRL. Zhang et al. [11] have implemented bidirectional region growing where they have82

3

used a dynamic queue (stack). Jiang et al. [12] have proposed improved branch based region83

growing vessel segmentation algorithm using stack.84

GPU based implementation of SRG needs a dynamic queue (stack). CPUs provide85

hardware support for stacks but GPUs do not [6]. Any queuing system has a large number86

of pieces of work to do and a fixed number of workers corresponding to the fixed number87

of computing units. Pieces are then assigned dynamically to the workers. The problem is88

deciding the maximum number of pieces of work in the queuing system. If decided, persistent89

blocks iterate through these pieces of work in the queuing system.90

Figure 1: Reference Approach derived from Smistad et. al. [8]

GPU implementation of a stack requires continuous changes in memory allocations which91

in turn requires iterative GPU kernel invocation from CPU i.e. kernel termination and92

relaunch (KTRL) as discussed in the algorithms IVM backtracking and work stealing phase93

by Pessoa et al. [13]. Task-parallel run-time system, called TREES, that is designed for high94

performance on CPU/GPU platforms by Hechtman et al. [14] have shown the invocation of95

GPU kernels from CPU iteratively for updating task mask stack (TMS) in TREES execution.96

The loop involved while implementing data flow through the stream kernels of the rendering97

system (involving stack) on GPU controlled by CPU (i.e. KTRL) is proposed by Ernst et98

al. [15].99

4

Nevertheless, there is an alternate GPU implementation of queuing system (stack) using100

dynamic kernel launching. Chen et. al. [2015] have proposed free launch based dynamic101

kernel launches through thread reuse technique [6]. This technique requires no hardware102

extensions, immediately deployable on existing GPUs. By turning subkernel launch into103

a programming feature independent of hardware support, free launch provides alternate104

approach for subkernel launch which can be used beneficially on GPUs.105

KTRL includes terminating a GPU kernel and invoking it from the CPU if the region106

can be grown further [3, 10]. GPU kernel SRG is called from CPU. Region grows from107

a seed based on the threshold criteria. SRG kernel is terminated and relaunched from108

CPU if region is not grown completely. This process continues until region can not be109

grown further. The process involves transfer of data to and fro from CPU and GPU. In110

KTRL, SRG kernel operates on each voxel of whole image data in all the iterations. It111

includes redundant memory transfers and unnecessary computations over complete image.112

Hence the main contributions of this paper are the implementation of persistence based113

approaches to improve the performance of SRG by reducing unwanted computations and114

avoiding intermediate memory transfers between CPU and GPU. Memory on the GPU is115

limited and may not be enough for processing large medical datasets. However, most medical116

datasets contain a lot of data that is not part of the RoI.117

The process of KTRL which involves iterative calling of the kernel is not efficient when118

implemented on GPU. Hence, as an optimized solution to KTRL, we propose persistent119

and grid-stride loop based GPU approaches. These approaches are based on processing over120

static RoI of tiles and dynamic RoI of tiles. We discuss the further details in the upcoming121

sections.122

3. Parallel SRG123

GPU is a grid of block of threads. Thread is the smallest computational unit mapped on124

the cores and block of threads are mapped on the streaming multiprocessors (SMs). Each125

SM can occupy more than one block. The threads from independent blocks can access data126

via shared memory in the SM [16]. In order to communicate valid data between the blocks,127

5

these persistent blocks need to be synchronized via IBS through device memory. Persistence128

implies maximum number thread blocks that can be active at the time of computation129

depending upon the GPU resources available [5, 17].130

We use PT and shared memory based approaches for SRG implementations. Shared131

memory and grid-stride loop based SRG reduces total memory transfers and computations.132

Grid-stride is inspired when the grid is not large enough to occupy all the data elements133

[18, 19]. Rather than assuming that the thread grid is large enough to cover the entire image134

elements, the kernel loops over the image one grid-size at a time. The stride of the loop135

is the total number of threads on the grid [18]. These threads (or block of threads) iterate136

over the image until the process of SRG terminates.137

CPU GPU

SRG
Kernel

YesStop No
Launch Kernel

Terminate Kernel

Can
Region
Grow?

Set a seed

Start

(a) using KTRL by Smistad et. al. [8], [7]

GPUCPU

SRG
Kernel

Yes

Set a
seed

Launch
Kernel

Terminate
Kernel

Can
Region
Grow?

IBS

No

Stop

Start

IBS-Inter Block GPU
Synchronization

(b) using Grid-Stride Loop

Figure 2: GPU Implementations of SRG

For each thread in parallel on GPU, SRG starts from the seed thread and finds similar138

neighbours surrounding it Region is grown by making similar neighbouring elements as new139

seeds. The process of SRG is repeated until similar neighbours can not be found. Normally140

SRG can be implemented on the GPU as a recursive or iterative kernel calling (KTRL) as141

shown in Figure 2a. Kernel calling involves invocation of a grid of block of threads. The142

blocks are executed on streaming multiprocessors (SM) and threads are executed on cores.143

Park et el. [20] and Smistad et al. [3] have given brief introduction about CUDA (Compute144

Unified Device Architecture) architecture and GPU computing. They have detailed the145

information on grid, blocks, threads and memory hierarchy of CUDA architecture.146

6

SRG can be recursive or iterative process. Recursive kernel calling can not utilize GPU147

cores efficiently due to hardware limitations [21]. Iterative GPU kernel call from CPU is148

costlier due to memory transfers between CPU and GPU and it involves all the image149

elements to be considered in each step of SRG. GPU implementation of SRG using KTRL150

is shown in the Figure 2a. It shows that, the kernel SRG is called on GPU continuously151

from the host CPU until the region can not be grown further. It starts from the seed, finds152

similar neighbours and grows the region. This process continues until the region can not be153

grown further. The process of the KTRL causes unnecessary image elements to be part of154

computations and intermediate memory transfers between CPU and GPU.155

Hence in order to avoid these problems, we propose grid-stride loop through complete156

image based GPU approach as shown in the Figure 2b. SRG starts from the seed and the157

control goes to GPU. The SRG kernel is launched if the region is not grown completely. IBS158

is needed in order to transfer valid data in between the active thread blocks. The number of159

active thread blocks on SMs are limited due to resource constraints. These maximum number160

of active blocks are persistent blocks [5, 16, 17]. The looping i.e. grid-stride loop terminate161

when the region can not be grown further and control returns to the host CPU as shown in162

the Figure 2b. We have discussed KTRL based GPU approach for SRG implementation163

and its disadvantages. Now, we are going to analyze PT based GPU approaches for164

high performance SRG implementation. Proposed approaches exploit parallelism using165

persistence and IBS as detailed in the static and dynamic approaches.166

3.1. Static Approach167

In the proposed approach, we apply grid-stride loop through static RoI (complete image)168

using persistence and IBS [5, 17]. The complete liver image is mapped on the GPU as grid169

of block of threads as shown in the Figure 3b. CPU invokes SRG kernel on GPU. Persistent170

blocks iterate through complete image and grow region from the seed in each and every171

iteration on GPU. This iteration of persistent blocks over the tiles of the image and the172

grid-stride loop based SRG is shown in Figure 2b. Steps of SRG in Figures 3c - 3f show the173

grown region of the liver. SRG kernel terminates when the region is grown completely. We174

7

copy the data from the device memory to the shared memory. This data is shared by all175

the threads inside the blocks. This is necessary to share the neighbouring elements between176

different voxels of the image. For each parallel thread in the block, if seed is found and is177

not the boundary element of the block, we calculate similar neighbouring elements. Region178

is grown by making similar neighbouring elements as new seeds.179

(a) Grid of Blocks (b) Liver Mapped on GPU (c) Step 1

(d) Step 2 (e) Step 3 (f) Step 4

Figure 3: SRG using Persistence and Grid-Stride Loop through Complete Image

There are four persistent blocks shown in Figure 3. These four persistent blocks are180

iterated through liver elements. Tiles with the same color are iterated by same persistent181

block. In KTRL, these tiles are processed by the thread blocks randomly.182

Step 1 in Figure 3c is obtained when the grid-stride loop by persistent blocks (4 in this183

example) is applied on the tiles over liver image. Region is grown around the seed containing184

similar elements. IBS is applied to communicate valid data in between the blocks for the185

next step of SRG as shown in Figure 2b. Persistent blocks iterate over the liver image and186

the region is grown again in step 2 as shown in Figure 3d. IBS is applied and valid data is187

communicated in between the blocks so that the region can be grown further as shown in188

Figures 3e and 3f. After step 4 in Figure 3f, SRG stops as region can not be grown further.189

Each step contain many iterations where region starts growing when persistent blocks iterate190

through tiles of the image. This iterative process continues until region can not be grown191

8

further. Code snapshot of the complete process is provided in the Algorithm 1.192

Algorithm 1: Grid-stride Loop through Complete Image

1: unfinished=1;

2: while unfinished==1 do

3: unfinished=0;

4: for int i=blockIdx.x; i <= width/(blockDim.x− 2); i=i+gridDim.x do

5: for int j=blockIdx.y; j <= height/(blockDim.y − 2); j=j+gridDim.y do

6: for int k=blockIdx.z; k <= depth/(blockDim.z − 2); k=k+gridDim.z do

7: Region Growing(arguments, unfinished);

8: end for

9: end for

10: end for

11: Inter Block GPU Sync();

12: end while

193

Global variable ”unfinished” is 1 if region has to be grown further else it is 0. Persistent194

blocks in x, y and z directions iterate through complete image. Two is subtracted from195

block dimensions to avoid computations around boundary voxels (from left and right in each196

dimensions) from shared memory as region can not be grown further in the block. After each197

step of SRG, when the processing on complete image is done then all the persistent blocks are198

globally synchronized via ”Inter Block GPU Sync()” barrier. This ensures that valid data is199

communicated for the next step of SRG. This barrier can be Atomic(), Quasi(), LockFree()200

or can be implemented using NVIDIA CUDA API Cooperative-groups [17, 22, 23]. We use201

quasi based IBS because of its efficicient implementation [22].202

4. Application to 2D Vessel Segmentation203

The 2D segmentation algorithm is inspired by the gradient based SRG algorithm developed204

by Rai and Nair [24]. We proposed the fast parallel SRG based segmentation algorithm on205

GPU for vessel segmentation. We discuss the two important modules i.e. image gradient206

and SRG for the fast parallel 2D segmentation of vessels from CT liver images.207

9

4.1. Parallel Image Gradient208

Rai and Nair [24] have presented homogeneity criterion selection and its impact on the209

quality of segmentation using SRG. They have used gradient based cost function. These210

cost functions are based on object contrast, region boundary, homogeneity of the region, and211

texture features like shape and color, intensities values, gradient direction and magnitude.212

The cost function exploits certain features of the image around the seed. Gradient based cost213

function requires gradient of the image, largest gradient magnitude (max g) and minimum214

gradient (min g) present in the image.215

Algorithm 2: Parallel Image Gradient using Grid-stride Loop

1: voxel.x = blockIdx.x * blockDim.x + threadIdx.x;

2: voxel.y = blockIdx.y * blockDim.y + threadIdx.y;

3: stridex = blockDim.x * gridDim.x;

4: stridey = blockDim.y * gridDim.y;

5: for int k=voxel.x; k < rows; k=k+stridex do

6: for int l=voxel.y; l < cols; l=l+stridey do

7: candidate.x = k + 1; candidate.y = l + 1;

8: check if neighbour candidate is within image dimensions;

9: gx = 0.5*(data[candidate.x*cols + l] - data[k*cols + l]);

10: gy = 0.5*(data[k*cols + candidate.y] - data[k*cols + l]);

11: g = sqrt(gx*gx + gy*gy);

12: data g[k*cols + l]=g;

13: if(max g < g) atomicMax(&max g, g);

14: if(min g > g) atomicMin(&min g, g);

15: end for

16: end for

216

The cost functions are:217

218

cost1 = g/(k ∗max g) 0 < cost1 < 1 (1)
219

cost2 = (max g − g)/(max g −min g) 0 < cost2 < 1 (2)

where g is gradient magnitude of the pixel under consideration and k is the constant220

10

parameter which controls the region growth. The pixel under consideration is added in221

the growing region if it matches with the seed elements i.e. cost functions specified by222

Equations 1 and 2 are satisfied otherwise it is excluded from consideration.223

We propose grid-stride loop based parallel image gradient method in Algorithm 2. For224

each pixel in parallel, we calculate its gradient magnitude (g) with respect to neighbouring225

element. Horizontal and vertical gradient components are given by gx and gy. The magnitude226

of maximum and minimum gradients are updated simultaneously. The gradient of the image227

is desired input for SRG based segmentation along with the seed. This is discussed in the228

next section.229

4.2. Parallel Vessel Segmentation230

We propose fast parallel vessel segmentation as shown in Figure 4. The algorithm is231

inspired from gradient based segmentation algorithm by Rai and Nair [24]. Figure 4 shows232

parallel implementation of vessel segmentation where the user selects seed(s). These seed(s)233

along with the image are transferred to the GPU. Device kernel calculates the image gradient234

in parallel as discussed in the earlier section. The IBS is necessary to reflect the updated235

image gradients in the device memory.236

Further we apply SRG algorithm. The cost functions based on gradient are shown in237

Equations 1 and 2. For each pixel in parallel, the pixel under consideration invokes SRG238

kernel if it satisfies the cost functions. The seeds are updated after IBS and the gradient239

based cost functions are verified again for new pixels. This process continues until no new240

seeds are formed i.e. no new pixels are added to the growing region.241

The kernel is terminated and the control returns to the CPU when the region is grown242

completely. The segmented image is transferred to the CPU. The process of segmentation243

stops. This GPU implementation avoids iterative call of SRG kernel from CPU. We use244

gradient and persistent based parallel SRG for vessel segmentation.245

11

Figure 4: Proposed Parallel Vessel Segmentation

5. Performance Evaluation246

We propose persistent and grid-stride based GPU approaches for fast parallel 2D vessel247

segmentation. The performance results are obtained from KTRL and proposed persistent248

based GPU approach. We compare proposed approaches with KTRL. We use Intel(R)249

Core(TM) i7-7700HQ CPU @ 2.80GHz RAM 24 GB, NVIDIA GPU 1050 (RAM 4GB),250

OpenCL 1.2 (ref. [25]) and CUDA Toolkit 10.1 for the implementation.251

5.1. Parallel 2D Vessel Segmentation252

We propose persistent and grid-stride based GPU approaches for fast parallel 2D vessel253

segmentation. Variations in vessel segmentation with constant parameter k using parallel254

SRG is shown in Figure 5. The input to the parallel 2D SRG is CT slice of the liver as255

shown in Figure 5a. We calculate the gradient of input CT image as shown in Figure 5b.256

The ground truth for the segmentation is shown in Figure 5c.257

We show the two segmented vessels with change in parameter k i.e. 0.04, 0.05, and 0.06.258

The first segmented vessel as shown in Figures 5d, 5e, 5f is accurate at 0.05. Similarly we259

12

(a) CT Image (b) Gradient (c) Ground Truth

(d) Vessel 1 for k=0.04 (e) Vessel 1 (k=0.05) (f) Vessel 1 (k=0.06)

(g) Vessel 2 (k=0.04) (h) Vessel 2 (k=0.05) (i) Vessel 2 (k=0.06)

(Note: k=0.05 is providing visually better results for the first Liver slice)

Figure 5: Variations in Fast Parallel Vessel Segmentation with Constant Parameter ’k’ using Parallel SRG

on First Liver Slice

show the segmentation of second vessel from the same slice. The variations in segmentation260

w.r.t. k are shown in Figures 5g, 5h, 5i. The more accurate segmentation is obtained at261

0.05.262

Further we show the accuracy of the segmentation on another CT Slice as shown in263

Figure 6a. We calculate the gradient (Figure 6b) of the input CT image on GPU. We apply264

the parallel SRG using gradient based thresholding criteria giving more accurate results at265

k=0.05 for two vessels inside the CT slice as shown in Figures 6c and 6d. The ground truth266

for the segmentation is shown in Figure 6e. We analyze that the vessels are more accurately267

segmented when the parameter k takes the value 0.05.268

The speedup obtained by proposed parallel static approach over KTRL on first two CT269

liver slices are shown in the Table 1. The maximum speedup for vessel segmentation by270

13

(a) CT Image (b) Gradient (c) First Vessel (d) Second Vessel (e) Ground Truth

Figure 6: Vessel Segmentation (for k=0.05) using Parallel SRG on Second Liver Slice

Table 1: Time and Speedup for Vessel Segmentation

Data → Vessel Segmentation

GPU Approaches →

Metrics ↓
KTRL

Static

(Speedup)

Time in ms for kernel

SRG - 1st Slice (k=0.05)

1st vessel

5.7
3.4

(1.67x)

Time in ms for kernel

SRG - 1st Slice (k=0.05)

2nd vessel

2.1
1.5

(1.4x)

Time in ms for kernel

SRG - 2nd Slice (k=0.05)

1st vessel

1.5
1

(1.5x)

Time in ms for kernel

SRG - 2nd Slice (k=0.05)

2nd vessel

3.5
2.4

(1.45x)

proposed parallel static SRG is 1.67x w.r.t. KTRL on the first liver slice. But the average271

speedup obtained by proposed parallel static approach for all the vessels (in 6 slices tested) is272

1.9x compared to KTRL. We evaluate the speedup of the vessel segmentation on parameter273

k=0.05 because the vessel segmentation is more accurate as shown in Figure 5.274

Further we analyze the effect of parallel SRG on different slices for multiple vessel275

segmentation using multiple seeds as shown in Figures 7, 8, 9, and 10. The segmentation276

14

(a) CT Image (b) Gradient (c) Two Seeds (d) Four Seeds (e) Ground Truth

Figure 7: Fast Parallel Vessel Segmentation using Parallel SRG on Third Liver Slice using multiple seeds

(a) CT Image (b) Gradient (c) Three Seeds (d) Four Seeds (e) Ground Truth

Figure 8: Fast Parallel Vessel Segmentation using Parallel SRG on Fourth Liver Slice using multiple seeds

(a) CT Image (b) Gradient (c) Single Seed (d) Four Seeds (e) Ground Truth

Figure 9: Fast Parallel Vessel Segmentation using Parallel SRG on Fifth Liver Slice using multiple seeds

(a) CT Image (b) Gradient (c) Two Seeds (d) Three Seeds (e) Ground Truth

Figure 10: Fast Parallel Vessel Segmentation using Parallel SRG on Sixth Liver Slice using multiple seeds

of the long vessel as shown in Figure 8d is slightly extended compared to the ground truth277

shown in Figure 8e. It can be seen from input CT image and gradient image (Figures 8a278

and 8b), the long vessel has extension which is not shown in the ground truth. We show the279

thick vessel segmentation in Figures 7d, 9c, 8c and thin vessel segmentation in Figures 7c,280

8c and 8d.281

15

Our proposed parallel implementations of SRG are not only fast but also accurate for282

vessel segmentation. This accuracy of the segmentation depends on the constant parameter283

’k’. The clinicians get the flexibility to decide which segmentation is more accurate. The284

process takes very less time (few ms). Hence this reduces the overall time for segmentation285

for various values of parameter ’k’ if the clinician wants to have more accuracy.286

5.2. Discussion287

In this paper, we propose persistence and grid-stride loop based SRG implementation.288

In order to obtain significant speedup, we need to exploit parallelism by using persistence289

and IBS. It involves change in the large body of SRG algorithm. We want algorithms that290

require as less synchronization as possible. In general if algorithm requires IBS, it is probably291

not going to be particularly fast. The fastest algorithms on GPUs are ones that fit nicely292

into the GPU programming model, where blocks are independent from each other and do293

not require synchronization.294

But the problem arises when iterative calling of the kernel can not be avoided. It incurs295

memory transfers from CPU to GPU when KTRL is used for global synchronizations. Hence296

it has to go through synchronizations as the next step of SRG which is dependent on the297

current step. Terminating a kernel and relaunching incurs data transfers from CPU to GPU298

and vice versa. It is time consuming.299

If we use IBS method along with persistence, then we can map whole algorithm on300

GPU with synchronization. Control comes back to CPU only if the kernel task is over.301

CPU launches a kernel on GPU, GPU executes it and final results are copied to CPU. No302

intermediate data communication occurs in the proposed approach (unlikely in KTRL).303

6. Conclusion304

In this paper, we discuss SRG based vessel segmentation and its parallel implementation305

on GPU. We propose persistence and grid-stride loop based GPU approach for SRG providing306

significant speedup. Normally recursion/iterative calling of a kernel is generally a bad idea307

on GPUs. We use persistence and grid-stride approach as an alternate implementation for308

16

KTRL. We compare proposed GPU optimization strategy for SRG implementation. The309

proposed persistent and gradient based parallel SRG for 2D vessel segmentation is accurate310

and 1.9x faster compared to the KTRL.311

Acknowledgements312

The work is supported by the project High Performance soft tissue Navigation (HiPerNav).313

This project has received funding from the European Union Horizon 2020 research and314

innovation program under grant agreement No. 722068. We thank The Intervention Centre,315

Oslo University Hospital, Oslo, Norway for providing the CT images with ground truths for316

the clinical validation of vessel segmentation317

References318

[1] R. Palomar, F. A. Cheikh, B. Edwin, Å. Fretland, A. Beghdadi, O. J. Elle, A novel method for planning319

liver resections using deformable bézier surfaces and distance maps, Computer methods and programs320

in biomedicine 144 (2017) 135–145.321

[2] K. K. Delibasis, A. Kechriniotis, I. Maglogiannis, A novel tool for segmenting 3d medical images based322

on generalized cylinders and active surfaces, Computer Methods and Programs in Biomedicine 111 (1)323

(2013) 148 – 165. doi:https://doi.org/10.1016/j.cmpb.2013.03.009.324

URL http://www.sciencedirect.com/science/article/pii/S0169260713000989325

[3] E. Smistad, T. L. Falch, M. Bozorgi, A. C. Elster, F. Lindseth, Medical image segmentation on gpus–a326

comprehensive review, Medical image analysis 20 (1) (2015) 1–18.327

[4] J. Wassenberg, W. Middelmann, P. Sanders, An efficient parallel algorithm for graph-based image328

segmentation, in: International Conference on Computer Analysis of Images and Patterns, Springer,329

2009, pp. 1003–1010.330

[5] K. Gupta, J. A. Stuart, J. D. Owens, A study of persistent threads style gpu programming for gpgpu331

workloads, in: Innovative Parallel Computing-Foundations & Applications of GPU, Manycore, and332

Heterogeneous Systems (INPAR 2012), IEEE, 2012, pp. 1–14.333

[6] G. Chen, X. Shen, Free launch: optimizing gpu dynamic kernel launches through thread reuse, in:334

Proceedings of the 48th International Symposium on Microarchitecture, ACM, 2015, pp. 407–419.335

[7] E. Smistad, Seeded region growing,336

https://github.com/smistad/FAST/tree/master/source/FAST/Algorithms/ (2015).337

17

[8] E. Smistad, A. C. Elster, F. Lindseth, Gpu accelerated segmentation and centerline extraction of tubular338

structures from medical images, International journal of computer assisted radiology and surgery 9 (4)339

(2014) 561–575.340

[9] P. Harish, P. J. Narayanan, Accelerating large graph algorithms on the gpu using cuda, in: S. Aluru,341

M. Parashar, R. Badrinath, V. K. Prasanna (Eds.), High Performance Computing – HiPC 2007,342

Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 197–208.343

[10] E. Smistad, A. C. Elster, F. Lindseth, Gpu accelerated segmentation and centerline extraction of tubular344

structures from medical images, International journal of computer assisted radiology and surgery 9 (4)345

(2014) 561–575.346

[11] X. Zhang, X. Li, Y. Feng, A medical image segmentation algorithm based on bi-directional region347

growing, Optik-International Journal for Light and Electron Optics 126 (20) (2015) 2398–2404.348

[12] H. Jiang, B. He, D. Fang, Z. Ma, B. Yang, L. Zhang, A region growing vessel segmentation algorithm349

based on spectrum information, Computational and mathematical methods in medicine 2013.350

[13] T. C. Pessoa, J. Gmys, N. Melab, F. H. de Carvalho Junior, D. Tuyttens, A gpu-based backtracking351

algorithm for permutation combinatorial problems, in: J. Carretero, J. Garcia-Blas, R. K. Ko,352

P. Mueller, K. Nakano (Eds.), Algorithms and Architectures for Parallel Processing, Springer353

International Publishing, Cham, 2016, pp. 310–324.354

[14] B. A. Hechtman, A. D. Hilton, D. J. Sorin, TREES: A CPU/GPU task-parallel runtime with explicit355

epoch synchronization, CoRR abs/1608.00571 (2016) ,. arXiv:1608.00571.356

URL http://arxiv.org/abs/1608.00571357

[15] M. Greiner, Stack implementation on programmable graphics hardware, Vision, Modeling, and358

Visualization 2004: Proceedings (2004) 255.359

[16] V. Vineet, P. J. Narayanan, Cuda cuts: Fast graph cuts on the gpu, in: 2008 IEEE Computer360

Society Conference on Computer Vision and Pattern Recognition Workshops, 2008, pp. 1–8.361

doi:10.1109/CVPRW.2008.4563095.362

[17] S. Xiao, W. C. Feng, Inter-block gpu communication via fast barrier synchronization, in: 2010363

IEEE International Symposium on Parallel Distributed Processing (IPDPS), 2010, pp. 1–12.364

doi:10.1109/IPDPS.2010.5470477.365

[18] M. Harris, Cuda pro tip:write flexible kernels with grid-stride loops (2015).366

URL http://goo.gl/b8Vmkh367

[19] M. Sourouri, S. B. Baden, X. Cai, Panda: A compiler framework for concurrent cpu+gpu execution368

of 3d stencil computations on gpu-accelerated supercomputers, International Journal of Parallel369

Programming 45 (3) (2017) 711–729.370

[20] S. Park, J. Lee, H. Lee, J. Shin, J. Seo, K. H. Lee, Y.-G. Shin, B. Kim, Parallelized seeded region371

18

growing using cuda, Computational and mathematical methods in medicine 2014.372

[21] X. Tang, A. Pattnaik, H. Jiang, O. Kayiran, A. Jog, S. Pai, M. Ibrahim, M. T. Kandemir, C. R. Das,373

Controlled kernel launch for dynamic parallelism in gpus, in: 2017 IEEE International Symposium on374

High Performance Computer Architecture (HPCA), 2017, pp. 649–660. doi:10.1109/HPCA.2017.14.375

[22] Y. Komura, Y. Okabe, Gpu-based single-cluster algorithm for the simulation of the ising model, Journal376

of Computational Physics 231 (4) (2012) 1209–1215.377

[23] T. Sorensen, H. Evrard, A. F. Donaldson, Cooperative kernels: Gpu multitasking for blocking378

algorithms, in: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,379

ACM, 2017, pp. 431–441.380

[24] G. Rai, T. Nair, Gradient based seeded region grow method for ct angiographic image segmentation,381

arXiv preprint arXiv:1001.3735, (2010).382

[25] J. E. Stone, D. Gohara, G. Shi, Opencl: A parallel programming standard for heterogeneous computing383

systems, IEEE Des. Test 12 (3) (2010) 66–73. doi:10.1109/MCSE.2010.69.384

URL http://dx.doi.org/10.1109/MCSE.2010.69385

19

