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Abstract

Accurate and fast liver segmentation remain challenging and important tasks for clinicians.

Segmentation algorithms are not fast and accurate due to noise and low quality images

in computed tomography (CT) abdominal scans. Chan-Vese is an active contour based

powerful and flexible method for image segmentation due to better robustness for noise.

But it is quite slow due to time-consuming partial differential equations, especially for large

medical dataset. It can pose a problem for a real time implementation of liver segmentation

and hence, an efficient parallel implementation is very important. The next and important

part is the contrast of CT liver images. Liver slices are sometimes very low in contrast

reducing the overall quality of liver segmentation. Hence, we implement cross modality

based liver contrast enhancement as a preprocessing step to liver segmentation. GPU

implementation of Chan-Vese improves average speedup by 99.811 (± 7.65) times and 14.647

(± 1.155) times with and without enhancement respectively in comparison to the CPU.

Average dice, sensitivity and accuracy of liver segmentation are 0.656, 0.816 and 0.822 on

the original liver images and 0.877, 0.964 and 0.956 on the enhanced liver images improving

the overall quality of liver segmentation.
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1. Introduction

Image segmentation is a popular research topic in medical imaging, as it has number

of applications such as tissue detection [1], segmentation [2, 3, 4, 5], reconstruction [6],

registration [6, 7] etc. There are many methods proposed for image segmentation such as

region growing [8], thresholding [9], gradient approach [3], contour methods [10, 11] etc.

These are either based on edge or region. They are further categorized based on histogram,

spatial information of the image, convergence active contours etc [4, 12]. The active contour

models are essential when the edge of the region of interest in the image is not clear and

diffused [4, 13]. Computed tomography (CT) scans sometimes provide poor quality images

where liver boundaries are not clearly visible and liver segmentation is essential for clinicians

for the treatment of the patients.

Chan-Vese algorithm is developed on active contour models using level set approach

[4, 14]. This works on the initial contours, average intensity values inside and outside the

curve and try to optimize the energy based on level set approach [15, 16]. The algorithm

works on the principle of energy minimization problem which relies on calculus and partial

differential equation [17, 18]. It is one of the influential and effective methods in order to

optimize Mumford-Shah function which includes energy terms defined in image space and

contour space [12, 19, 20]. Chan-Vese is flexible and robust to segment the CT liver image

which is difficult to segment using classical segmentation techniques [10, 21].

The study proposes high performance Chan-Vese model for liver segmentation by avoiding

intermediate memory transfers between CPU and GPU. But the Chan-Vese model alone is

not sufficient for accurate liver segmentation as it sometimes results in many false positives,

lowering the sensitivity and accuracy [22, 23] degrading the quality of liver segmentation.

Hence, we employ enhancement module before Chan-Vese model for segmentation. The

module is based on cross modality based contrast enhancement. This works on target

and guided image. We consider CT liver image as target image and MRI scan as guided

image. Cross modality approach approximate the histogram of target CT scan similar to

guided MR image [24, 25]. The proposed parallel approach results in fast and accurate liver
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segmentation.

The contributions of the paper are as follows: We aim fast parallel Chan-Vese model

for liver segmentation and apply Chan-Vese with and without liver contrast enhancement.

The GPU implementation is faster compared to CPU and the liver contrast enhancement

improves the quality of liver segmentation by reducing the false positives and increasing the

sensitivity, dice score and accuracy of the segmentation. The average dice score, sensitivity

and accuracy of the liver segmentation are 0.877 ± 0.036, 0.964 ± 0.037 and 0.956 ± 0.022

after liver contrast enhancement improving the quality of segmentation. GPU implementation

of Chan-Vese segmentation algorithm improves the average speedup by 99.811 ± 7.65 times

and 14.647 ± 1.155 times with and without enhancement in comparison to the CPU.

The rest of the paper is structured as follows. Section 2 briefs the background and

motivation with respect to the Chan-Vese based segmentation. Section 3 explains the flow

of Chan-Vese model and its parallel implementation on GPU with and without liver contrast

enhancement. Performance evaluation based on quality of liver segmentation and speedup is

analyzed in the Section 4. Section 5 concludes summarizing the results and main conclusions

of the paper.

2. Background and Motivation

Image segmentation plays a vital role in medical image analysis. There are many methods

developed for image segmentation based on edge and region [8]. Researchers have worked on

active contour models for image segmentation [4, 14, 17, 18]. We explain background and

motivation behind active contours and the benefits of Chan-Vese based image segmentation.

Scientists have explored snake model for segmentation. Snakes defined as a set of points

around a contour [26, 27, 28]. The contour can be initialized inside the object forcing the

snake to expand outside. This is Balloon Force algorithm [29, 30]. Energy of snake based

model which makes a good segmentation can be defined as follows. Total energy of curve C

E(C) = Einternal(C) + Eexternal(C) (1)

Equation 11 is a total energy where curve repeatedly evolves to minimize energy E.
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Einternal(C) and Eexternal(C) depend on the shape of the snake curve and image intensities

respectively.

Einternal(C) =

∫ 1

0

w1||c′(s)||2 + w2||c′′(s)||2ds (2)

Equation 2 is a internal energy. Low c’ means the curve is not too stretchy and it keep

points on the curve together. Low c” implies the curve is not too bendy i.e. it is smooth

and keeps points on curve from oscillating.

F (s) = −[(
∂I(X(s), Y (s))

∂X
)2 + (

∂I(X(s), Y (s))

∂Y
)2] (3)

Eexternal(C) =

∫ 1

0

−||∇I(c(s))||2ds =

∫ 1

0

F (s)ds (4)

If there is no edge then ∇I(c(s)) = 0 and F (s) = 0 (from Equation 3 and 4). If there is a

big edge then ||∇I(c(s))|| is large and F (s) is more negative. It implies that the Eexternal(C)

is lowered. The aim is to minimize E(C) from Equation 11. But the contour never sees the

strong edges that are far away and snake gets hung up due to many small noises in the image

[26, 27, 29, 30]. Hence researchers came up with the solution called as gradient vector flow

(GVF). Instead of using image gradient, create a new vector field over image plane [31, 32].

The mathematical representation of GVF [33, 34] are given by the following equations.

GV F1 = [(
∂Vx
∂x

)2 + (
∂Vx
∂y

)2 + (
∂Vy
∂x

)2 + (
∂Vy
∂y

)2] (5)

GV F2 = ||∇e||2||V −∇e||2 (6)

cost GV F =

∫ ∫
µ(GV F1) +GV F2 dxdy (7)

Cost of GVF has two components defining smoothness (GVF1 from Equation 5) and

edge map (GVF2 from Equation 6) as shown in Equation 7. If ∇e is big then gradient is

large and V follows the edge gradient faithfully. If ∇e is small then gradient is small and V

follows along to be as smooth as possible. µ is a tuning parameter to define the scaling of
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smoothness in comparison to the edge map. GVF2 from Equation 6 defines the characteristic

of the image based on edge where ∇e is magnitude of the edge map and (V − ∇e) shows

similarity between V and ∇e. If the region has big edge (high ∇e) then (V − ∇e) should

be smaller which implies V is pushed towards ∇e.

But there are problems with both snake and GVF models [26, 28, 32]. They require

keeping track of number of points and point distribution. It is necessary to get points to

probe into concavities. Snakes as defined can never wrap around multiple objects at once

and can’t do holes to get inner boundary inside region of interest. Hence researchers came

up with another solution called as level sets [17, 18, 35]. Shape-intensity prior level set

proposed by Wang et. al. [35] contains the atlases which are weighted in the selected

training datasets by calculating the similarities between the atlases and the test image to

dynamically generate a subject-specific probabilistic atlas for the test image.

The idea of level sets came from fluid dynamics in order to evolve the wavefront. Instead

of parametrize the curve by a set of ordered points, discretize the image plane (x,y) and define

a function f(x,y). Evolving level set function i.e. pixels where f(x, y) = 0 is mathematically

well behaved [14, 15, 20]. Define the object contour we care about which can include multiple

region of interests, inner boundary inside RoI etc. f(x, y) > 0 implies the pixels are inside

the curve and f(x, y) < 0 describes the pixels outside the curve [12, 15].

In the absence of strong edges, we can use a region based formulation which is Chan-Vese

model for segmentation [4, 12, 20].

SDinside =

∫
inside

(I(x, y)− µinside)
2dxdy (8)

SDinside from Equation 8 denotes the standard deviation of pixels inside the curve.

SDoutside =

∫
outside

(I(x, y)− µoutside)
2dxdy (9)

SDoutside from Equation 9 is standard deviation of pixels outside the curve.

SDtotal = λ1 ∗ SDinside + λ2 ∗ SDoutside + λ3 ∗ LC + λ4 ∗ AUC (10)

SDtotal from Equation 10 represents Chan-Vese algorithm where LC is length of the curve,

AUC is area under the curve and λ1 > 0, λ2 > 0, λ3 ≥ 0, λ4 ≥ 0 are fixed parameters [15, 20].
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The algorithm tries to maximize the difference in standard deviations of pixel distributions

between inside and outside the curve.

The default value of λ is 0.1. It describes the relative weighting of curve smoothness.

But after experimentation, the authors found the following values (in Equation 10) suitable

for convergence and accurate liver segmentation. The weight parameter of the globe term

which is inside the level set is λ1 = 0.2. The weight parameter of the globe term which

is outside the level set is λ2 = 0.2. The weight parameter of the length term is λ3 =

0.04 ∗width(image) ∗height(image) and λ4 = 0.0002 ∗width(image) ∗height(image) is the

weight parameter of the area term.

In the next section, we discuss the CPU and GPU implementation of Chan-Vese model

for liver segmentation.

3. Methodology

In this section we discuss the proposed methodology based on Chan-Vese model and

the impact of cross modality based contrast enhancement on liver segmentation. The

sequential and parallel implementations of Chan-Vese model with and without liver contrast

enhancement are explained in the following sections.

3.1. CPU Implementation of Chan-Vese

In this section, we discuss flowchart for CPU implementation of Chan-Vese model for liver

segmentation. The algorithm illustrated by the flowchart in Figure 1 is based on Chan-Vese

based liver segmentation used to separate liver from the other objects in CT image.

• Initialization: The aim of this step is to create a mask in order to generate a signed

distance function (SDF) [14, 20]. This consists of two regions i.e. liver as foreground

and non-liver region as background. The mask should be similar to liver area in order

to increase the sensitivity of segmentation and reduce the time computation.

• Stopping Criteria: This step ensures the process of liver segmentation is complete or

not. If the process is complete then the segmented image is stored and the process
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Force

Minimize 
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Start Load Liver 
Image

Save 
Segmentation

Figure 1: CPU implementation of Chan-Vese

of liver segmentation stops, else model calculates the mean of interior and exterior

regions with respect to initial mask.

• Mean: This step includes computation of SDF as the first step. This is computed

from the initial mask on the liver using Euclidian distance. In this work, we chose φ as

an image with real values in order to chose distances from the curve so that distance

function (SDF) is positive inside the curve and negative outside. But the computation

of SDF is time consuming as it takes more time to change φ. Hence we apply narrow

band approach to reduce the computation time by restricting the computation to a

band of grid points near the level set (or mask). The SDF helps to find the average

value of pixels inside and outside the curve [14, 19].

• Force: The calculation of average value of pixels inside and outside the curve are

essential to compute the force from Chan-Vese energy Equation 11.

E = SDin + SDout =

∫
in

(I(x, y)− µin)2dxdy +

∫
out

(I(x, y)− µout)
2dxdy (11)

Force is computed from the image using average value of pixels inside and outside the
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curve as shown in Equation 12.

F = ∇E = (I(x, y)− µin)2 + (I(x, y)− µout)
2 (12)

Further we calculate curvature using kappa equation [12, 15] and central difference

approximation scheme to approximate the derivatives of SDF with respect to x and y.

• Minimize Energy: The gradient descent algorithm helps to minimize energy given by

Equation 11. The curve is updated by the calculation of SDF after small time interval

and is approximated by first-order Taylor expansion.

• Maintain CFL Condition: Courant, Friedrichs, Lewy (CFL) [14, 15, 19] condition is

necessary for convergence while solving the partial differential equations in order to

maintain the accuracy of the curve. The equation is given as

C = u∆t/∆x ≤ Cmax (13)

Where C is the courant number, u is the dependent variable which is magnitude of the

velocity, ∆t is the time interval and ∆x is the space interval. Value of Cmax is typically

1 for the explicit methods. Equation 13 is one dimensional case of CFL condition.

Courant number can be increased by increasing the time interval or decreasing the

space interval. Courant number controls the stability and it is necessary to choose the

space and time intervals precisely.

• Evolve The Curve: We calculate Sussman function [15] to maintain the smoothness

of the curve. Re-initialization of the curve takes place and the process of Chan-Vese

based segmentation continues until the liver is segmented completely and the curve

can not be evolved further.

3.2. GPU Implementation of Chan-Vese

Our aim is fast parallel implementation of Chan-Vese model for liver segmentation. In

this section, we discuss the GPU implementation of Chan-Vese model. Chan-Vese is an
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iterative algorithm. The flow of GPU implementation of Chan-Vese for liver segmentation

is shown in Figure 2.

We load the liver image and send it to the GPU memory. CPU calls Chan-Vese kernel

on GPU. Each thread on GPU in parallel performs initialization of the curve. The stopping

criteria is checked on the device memory to ensure the process is finished or not. If the

process is finished then the control returns to the CPU storing the segmented image and the

process stops, else the process of evolution of the curve continues in parallel on GPU.

  CPU

GPU

StopStart
Load 
Liver 
Image

Send 
Image to 

GPU

Call 
GPU 

Kernel

Chan-Vese

Save 
Segmented 

Image

Stop?

Minimize 
Energy

Yes

No

Force

Initialize

MeanCFL 
Condition

Evolve The 
Curve

IBS

Figure 2: GPU implementation of Chan-Vese

Each thread in parallel is responsible for the calculation of average value of pixels inside
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and outside of the curve. Inter block GPU synchronization (IBS) [36, 37] in between stages

is essential which ensures the valid data is communicated in between the blocks. Further

the Chan-Vese kernel on GPU calculates the force due to image pixels and the curvature

and the gradient descent algorithm to minimize the energy given by Equation 11. All the

threads maintain the CFL condition for convergence and calculate the Sussman function to

maintain the smoothness of the curve. The parallel threads reinitialize the curve and the

process of liver segmentation using Chan-Vese continues until the curve can not be evolved

further. The process of segmentation stops and control goes back to CPU if the stopping

criteria is satisfied.

These blocks communicate via IBS and the intermediate kernel calls are avoided using

the proposed approach which helps in increase in the performance. The kernel invokes

enough blocks of threads to compute liver segmentation. The thread blocks on the GPU

are the computational units launched in parallel to perform independent operations. The

maximum number of active blocks are called as persistent blocks [3, 36]. But the application

may require more blocks compared to the persistent blocks. We apply grid-stride loop so

that the persistent blocks are iterated to do task of remaining blocks [37, 38].

Chan-Vese is a powerful model for segmentation due to better robustness for noise but

the quality of liver segmentation is questionable due to the low contrast of the liver images.

Hence it is necessary to assess the impact of contrast enhancement on liver segmentation.

We employ cross modality based liver contrast enhancement as pre processing step for liver

segmentation. The parallel implementation of liver segmentation with contrast enhancement

is discussed in the next section.

3.3. GPU Implementation of Chan-Vese with Enhancement

The Chan-Vese based liver segmentation results in false positives. In order to reduce the

false positives and increase the sensitivity of liver segmentation, we enhance the CT liver

image using cross modality based contrast enhancement. The flow of liver segmentation

using Chan-Vese and liver contrast enhancement is provided in Figure 3.

We load CT and MR images and send it to the GPU. CPU invokes a single kernel
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Figure 3: GPU implementation of Chan-Vese with Enhancement

for enhancement and Chan-Vese for liver segmentation. Liver enhancement improves the

contrast of the CT liver image considering MR image as the guidance image. The parallel

computing units on GPU matches the histogram of CT image with the guided MR image

before sending it to the Chan-Vese model for segmentation. The liver contrast enhancement

consists of following modules:

• 2D Histogram: The contrast enhancement module calculates the 2D histogram of

both CT and MR images. A 2D histogram is a plot of a pixel and its neighbour to
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discover underlying 2D frequency distribution of the image. This implies how often

the neighbouring pair of values in an image occurs instead of just considering the

individual pixel values [25, 39].

• 2D Cumulative Distributive Function (CDF): The 2D histograms helps to find the

2D CDFs of CT and MR images for contrast enhancement. 2D CDF calculates the

probability of a possible pixel pair in CT and MR images [24, 39].

• 2D Histogram Specification (HS): This is also called as histogram equalization. HS

spreads out spreads out the most frequent intensity values improving the global contrast

of the image [25, 39].

• 2D Histogram Matching (HM): The process of histogram equalization onto the CT

image gives the enhanced image by mapping the modified intensity values obtained

from 2D histogram equalization to the corresponding pixels [24, 25].

The enhanced CT image obtained from 2D cross modality goes to the Chan-Vese model

for segmentation. GPU performs the segmentation and the control returns to the CPU

saving the segmented liver image. This parallel Chan-Vese model is described in the previous

Section 3.2. In this next section, we discuss the performance evaluation of CP and GPU

based Chan-Vese model for liver segmentation.

4. Performance Evaluation

In this section, we analyze and compare the performance of Chan-Vese model on CPU and

GPU, the impact of enhancement on liver segmentation and the quality of liver segmentation

using dice score, sensitivity and accuracy. We use Intel(R) Core(TM) i7-7700HQ CPU @

2.80GHz RAM 24 GB, NVIDIA GPU GeForce GTX 1050 (RAM 4GB) and CUDA Toolkit

10.1 for the implementation and evaluate the performance of liver segmentation in the

following section.
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4.1. Dataset

Liver data for the research work has been acquired from The Intervention Center,

University of Oslo, Norway [3, 40]. The ground truths for liver segmentation are provided

by the clinician. Inter and intra observer errors exist while creating the ground truths for

the input CT images. Intra observer error is when the same clinician creates the ground

truth for the input CT image in different time stamps. Inter observer error is created when

different clinicians create the ground truth for the same input CT image. This also depends

upon the registration of input CT and MR images which are going to be used for cross

modality based contrast enhancement. The errors can also be introduced if clinicians use

different registration techniques for CT and MR slices. The clinicians use a 3D slicer for

registration.

The CT and MRI volumes are loaded in 3D Slicer; then the ROIs (region of interests)

are extracted from both volumes using ‘Surface Cut’ and ‘Mask Volume’ options available

in ‘Segment Editor’ tool. The ROI can also be extracted using the ‘Threshold’ option in

‘Segment Editor’. The ROIs can be registered using ‘General Registration’ by selecting

appropriate (Degree of Freedom/ DOF) and ‘Initialization Transform Mode’. Note that the

registration results depend on the organs whose MRI and CT are being registered. Liver

CT and MRIs are quite challenging to register.

Table 1 shows information about images of different sizes including total number of liver

slices used for experimentation from a particular volume. We validate the performance on

24 liver slices obtained from 4 different registered volumes. For ground truth, images are

pre-processed through locally developed applications with 3D Slicer. In some cases, the

same application is used for liver segmentation and separation of portal and hepatic vessels

although another possibility is to use active contour tool using ITK-SNAP and manual

correction [40].

4.2. Quality of Liver Segmentation

We discuss the Chan-Vese model for liver segmentation and the impact of cross modality

based contrast enhancement on liver segmentation. The segmented results using Chan-Vese
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Table 1: Liver Dataset

Volume #
Total #

of Slices

Image

Size (wxh)

# of Slices

with Liver

28059 59 462x321 6

23186 87 405x346 6

18152 139 512x512 5

10504 59 460x306 7

on original and enhanced images are shown in Figures 4, 5, and 6.

Table 2: Liver Segmentation Quality Analysis

Liver Chan-Vese without Enhancement Chan-Vese with Enhancement

Slice # Dice Sensitivity Accuracy Dice Sensitivity Accuracy

1 0.504 0.831 0.719 0.904 0.979 0.969

2 0.533 0.669 0.748 0.895 0.961 0.966

3 0.762 0.882 0.896 0.894 0.988 0.967

4 0.759 0.868 0.890 0.879 0.991 0.961

5 0.721 0.829 0.858 0.815 0.901 0.917

Average 0.656 0.816 0.822 0.877 0.964 0.956

Std. Dev. 0.126 0.085 0.082 0.036 0.037 0.022

Figures 4a, 5a, and 6a show the liver segmentation on original CT liver slices and Figures

4b, 5b, and 6b show the liver segmentation with enhancement. We analyze Chan-Vese

based segmented results from original image and enhanced image. Figures 4a2 and 4b4

show Chan-Vese based liver segmentation on the original image (Figure 4a1) and enhanced

image (Figure 4b3) respectively with ground truth Figure 4a3 or 4b5. Figures 5a2 and

5b4 show liver segmentation from original image (Figure 5a1) and enhanced image (Figure

5b3) respectively with ground truth Figure 5a3 or 5b5. Similarly, Figures 6a2 and 6b4

show liver segmentation from original image (Figure 6a1) and enhanced image (Figure 6b3)

respectively with ground truth Figure 6a3 or 6b5. The input CT images and ground truths

14



(a1) CT Image (a2) Seg (a3) GT

(a) Original Liver Image 1

(b1) CT Image (b2) MR (b3) Enh CT

(b4) Seg (b5) GT

(b) Liver Enhancement and Segmentation from Enhanced CT Image 1

Figure 4: Liver Segmentation from Original and Enhanced CT Image 1

are same inside Figures 4, 5, and 6. For example, same input slices are shown in Figures 4a1

and 4b1, Figures 5a1 and 5b1, and Figures 6a1 and 6b1. Identical ground truth images are

shown in Figures 4a3 and 4b5, Figures 5a3 and 5b5, and Figures 6a3 and 6b5. CT images

(Figures 4b1, 5b1, and 6b1) and MR images (Figures 4b2, 5b2, and 6b2) are used to obtain
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(a1) CT Image (a2) Seg (a3) GT

(a) Original Liver Image 2

(b1) CT Image (b2) MR (b3) Enh CT

(b4) Seg (b5) GT

(b) Liver Enhancement and Segmentation from Enhanced CT Image 2

Figure 5: Liver Segmentation Original and Enhanced CT Image 2

corresponding enhanced images i.e. Figures 4b3, 5b3 and 6b3 using cross modality based

liver contrast enhancement. We compare the segmented result with ground truth. It can be

seen from the quality assessment of liver segmentation (Table 2) that the segmented liver is

more accurate when the contrast of the liver is enhanced.

Table 2 shows the quality assessment parameters i.e. dice, sensitivity and accuracy

[22, 23]. Dice measure indicates the region of overlap. Sensitivity also called as true positive

rate defines whether the method is sensitive to the liver elements. Accuracy measure explains
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(a1) CT Image (a2) Seg (a3) GT

(a) Original Liver Image 3

(b1) CT Image (b2) MR (b3) Enh CT

(b4) Seg (b5) GT

(b) Liver Enhancement and Segmentation from Enhanced CT Image 3

Figure 6: Liver Segmentation from Original and Enhanced CT Image 3

the number of liver and non-liver elements segmented accurately. It can be seen from the

Table 2 that the average dice, sensitivity and accuracy of the liver segmentation are 0.656

± 0.126, 0.816 ± 0.085 and 0.822 ± 0.082 on the original liver images and 0.877 ± 0.036,

0.964 ± 0.037 and 0.956 ± 0.022 on the enhanced liver images. Hence, Chan-Vese approach

improves the dice, sensitivity and accuracy of liver segmentation on the enhanced liver slices.

We further analyze the performance of liver segmentation on 24 liver slices from 4 different

volumes as shown in figure 7. Figures 7a, 7b, 7c and 7d show the average values of accuracy,

dice score and sensitivity for Chan-Vese model with and without enhancement. It can be seen

from the performance results comparison (Figures 7a, 7b, 7c and 7d) that the cross modality
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Figure 7: Segmentation Quality Assessment on Different Volumes

guided liver enhancement improves the quality of segmentation in terms of accuracy, dice

score and sensitivity using proposed Chan Vese based liver segmentation.

There are problems with constrained B-snake model [28]. They require keeping track

of the number of points and point distribution. It is necessary to get points to probe into

concavities. Snakes as defined can never wrap around multiple objects at once and can’t do

holes to get the inner boundary inside the region of interest. The contour of points never
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sees the strong edges that are far away and the snake gets hung up due to many small noises

in the image. Hence the authors came up with the solution using a level set based Chan-Vese

approach for liver segmentation.

Shape-intensity prior level set proposed by Wang et. al. [35] used the atlases which are

weighted in the selected training datasets by calculating the similarities between the atlases

and the test image to dynamically generate a subject-specific probabilistic atlas for the test

image. The most likely liver region of the test image is further determined based on the

generated atlas. A rough segmentation is obtained by a maximum a posteriori classification

of probability map, and the final liver segmentation is produced by a shape intensity prior

level set in the most likely liver region. Thus the overall process is slow due to the training

phase. The process also depends upon the large datasets for training.

In the proposed work, we do not use training and hence do not need large datasets.

In the absence of strong edges, region based formulation using Chan-Vese model performs

well for segmentation which can be seen from performance results and the authors employ

cross modality guided image enhancement as a preprocessing step which further improves

the quality of segmentation. The proposed segmentation algorithm can delineate liver

boundaries that have levels of variability similar to those obtained manually. The proposed

approach speeds up the overall process of liver segmentation by 100 times on GPU compared

to the CPU implementation.

MICCAI test data provided by the organizers of the ”SLIVER07” contains clinical 3D

computed tomography (CT) scans [41, 42]. The proposed approach is based on a cross

modality approach where we need MR scans for the guided enhancement. We feel that it

will not be fair to compare the results with Shi et. al. [41, 42] based on the dataset which

does not have registered MR scans. To the best of our knowledge, this is the first non

learning approach using cross modality based liver segmentation. The registered MR image

is used to enhance the low quality CT image. This is done by using a non-learning approach

of 2D histogram equalization and matching.

Kavur et. al. [43] reported that CT-MR liver segmentation is inferior to CT or MR

image segmentation due to CT-MR visual difference. The study from CHAOS Challenge
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by Kavur et. al. [43], proposes a learning based approach for segmentation taking CT-MR

images as training inputs in order to increase the training data and reveal common features

of incorporated modalities for an organ. The deep learning model learns from CT and MR

dataset combined. The cross-modality (CT-MR) learning proved to be more challenging

than individual training. Such complicated tasks could benefit from spatial priors, global

topological, or shape-representations in their loss functions as employed by some of the deep

learning models.

However, we show that the enhanced CT image using cross modality (CT-MR) approach

provides better segmentation results in terms of dice score, accuracy and sensitivity compared

to the original CT image. To the best of our knowledge, this is the first non learning

approach using cross modality based liver segmentation. The registered MR image is used

to enhance the low quality CT image. This is done by using a non-learning approach of 2D

histogram equalization and matching. The registered CT and MR images are provided by

the clinicians from Oslo University Hospital, Norway. The proposed approach is traditional.

The low quality CT image is enhanced using 2D histogram matching and then Chan-Vese

based level set approach is applied for accurate liver segmentation. In the next section, we

discuss the speedup obtained by the proposed GPU implementation in comparison to CPU.

4.3. Speedup

In this section, we discuss the speedup obtained by GPU implementation of Chan-Vese

over CPU and analyze the impact of enhancement on speedup. The speedup analysis of

liver segmentation on CPU and GPU is shown in Table 3.

The computational complexity of the proposed Chan-Vese algorithm is O(N) where N is

the number of elements in the CT image. So even for the large images, it is also very efficient.

The average time taken by CPU implementations (with and without enhancement) are

221.302 ± 55.8 seconds and 3.49425 ± 0.752 seconds respectively and GPU implementations

are 2.205 ± 0.484 seconds and 0.2345 ± 0.033 seconds respectively. Hence the GPU

implementations (with and without enhancement) on NVIDIA GPU GeForce GTX 1050

with RAM 4GB provide average speedup of 99.811 ± 7.65 times and 14.647 ± 1.155 times in
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Table 3: Liver Segmentation Speedup Analysis

Liver Chan-Vese without Enhancement Chan-Vese with Enhancement

Slice # CPU (s) GPU (s) Speedup CPU (s) GPU (s) Speedup

1 4.324 0.276 15.667 276.15 2.78 99.335

2 4.117 0.256 16.082 270.098 2.44 110.696

3 2.679 0.195 13.738 173.93 1.95 89.195

4 2.857 0.211 13.54 165.03 1.65 100.018

5 3.112 0.219 14.21 175.82 1.73 101.63

Average 3.49425 0.2345 14.647 221.302 2.205 99.811

Std. Dev. 0.752 0.033 1.155 55.8 0.484 7.65

comparison to the CPU implementation on Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz

RAM 24 GB. The reason behind the obtained speedup is the avoidance of intermediate kernel

calls and exploiting high level parallelism in liver contrast enhancement and Chan-Vese based

liver segmentation.

Liver contrast enhancement uses 2D histogram technique which includes histogram of

pair of neighbouring elements in CT and MRI image. Hence the complexity increases due

to pairwise histogram analysis of cumulative distributive function and histogram matching

and Chan-Vese model includes numerical calculations of partial differential equations (PDE)

which are time consuming. These tasks i.e. 2D histogram calculations and PDE solutions

have been implemented on NVIDIA GPU in parallel for liver segmentation providing average

speedup of 99.811 ± 7.65 compared to CPU implementation. The time is computed in GPU

time and it is optimized by avoiding the intermediate memory transfers.

We perform the statistical treatment of results. P value from ANOVA (analysis of

variance) for the datasets is 2.43 ∗ 10−14 which is less than 0.0005 (0.05%). We reject the

null hypothesis and conclude that not all means are equal which confirms the means are

statistically significant for the concerned experiments.
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4.4. Discussion

Chan-Vese (CV) algorithm is sometimes quite slow due to the time-consuming computation

of the partial differential equation solution, especially when dealing with the large medical

images. It can pose a problem for real time applications and an efficient parallel implementation

is very important. CV algorithm is a very powerful algorithm due to better robustness for

noise. But there are cases when the liver segmentation is less accurate and sensitive. It is

necessary to enhance the contrast of liver for more accurate liver segmentation. Hence

we incorporate cross modality guided image enhancement as preprocessing step to CV

for improving the quality of liver segmentation. But cross modality approach includes

2D histogram analysis which is time consuming and includes repetitive tasks of pairwise

histogram analysis on liver image elements. This is also applicable to repetitive numerical

calculations of PDE in CV over complete liver image. These repetitive tasks are implemented

on NVIDIA GPU using thread of blocks and performance is improved significantly by

exploiting parallelism over liver elements in comparison to CPU implementation.

5. Conclusion

In this paper, we propose fast parallel liver segmentation using Chan-Vese approach and

study the impact of contrast enhancement on liver segmentation. The proposed approach is

fast, accurate and outperforms other approaches for low quality CT liver slices. The proposed

segmentation algorithm can delineate liver boundaries that have levels of variability similar

to those obtained manually. GPU implementation of proposed approach speeds up the

overall process of liver segmentation by 100 times compared to the CPU implementation.

Chan-Vese based liver segmentation is less sensitive (0.816 ± 0.085 from Table 2) when

applied on original CT liver images. Sensitivity should be increased for more accurate liver

segmentation. Hence we apply cross modality based contrast enhancement on CT liver

images and segment the liver using Chan-Vese model of segmentation. The work compares

CPU and GPU implementation with and without enhancement. The average dice score,

sensitivity and accuracy of the liver segmentation are 0.877 ± 0.036, 0.964 ± 0.037 and
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0.956 ± 0.022 on the enhanced liver images. Cross modality based contrast enhancement

improves the quality of the results by decreasing the false positives and improving the dice

score, sensitivity and accuracy of the segmentation. The proposed GPU implementation

with enhancement improves the speedup by 99.811 ± 7.65 times over CPU implementation.

Hence the parallel implementation of Chan-Vese based liver segmentation is faster when

implemented on GPU and accurate when the contrast of CT liver image is enhanced.
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[6] R. Palomar, J. Gómez-Luna, F. A. Cheikh, J. Olivares-Bueno, O. J. Elle, High-performance
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